Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 55
Filter
1.
Journal of Environmental and Occupational Medicine ; (12): 728-736, 2023.
Article in Chinese | WPRIM | ID: wpr-976522

ABSTRACT

Polystyrene nanoplastics (PS-NPs) are widely used in industry, pharmaceutical and consumer packaging materials, and medical products. The biological health impacts of PS-NPs are receiving increasing attention. Therefore, it is necessary to conduct a literature review of in vitro and in vivo experimental studies from a biological mechanism perspective. Based on the latest research results at home and abroad, this review introduced the characteristics and cell internalization of PS-NPs in cytotoxicity experiments, and summarized the effects of PS-NPs on cytotoxic targets such as mitochondria, lysosomes, proteins, and DNA. In addition, the influencing factors of the health effects of PS-NPs were analyzed from the aspects of physical and chemical properties and cell types. Finally, by discussing the current research hotspots of cytotoxicity mechanism and biological effects, it was anticipated to provide a reference for the health risk management and biological safety assessment of PS-NPs.

2.
Journal of Environmental and Occupational Medicine ; (12): 296-303, 2023.
Article in Chinese | WPRIM | ID: wpr-969634

ABSTRACT

Background Methylmercury (MeHg) is a neurotoxin, and melatonin (MT) has a protective effect on the nervous system, but whether it can antagonize MeHg-induced nerve cell damage and the associated mechanism remain unknown. Objective Human neuroblastoma cells (SH-SY5Y cells) were used as research objects. A MeHg-induced SH-SY5Y cell senescence model was established to observe autophagy related protein, lysosomal number, and function changes, as well as potential intervention role and associated mechanism of MT. Methods (1) After SH-SY5Y cells were treated with different doses of MeHg (0, 0.125, 0.25, 0.5, 1, 2, and 4 μmol·L−1) for 48 h, the cell viability was detected using a cell viability detection kit (CCK-8 method) and the viability rate was calculated. Senescent cells were detected by an acidic senescence-associated-β-galactosidase (SA-β-gal) staining. (2) A MeHg dose of 0.5 μmol·L−1 that significantly induced senescence of SH-SY5Y cells was screened, and a half and a quarter of the dose (0.25 and 0.125 μmol·L−1) were used for the middle and low dose groups, respectively. (3) In the MT intervention experiments, SH-SY5Y cells were divided into four groups, including control group (0.1% DMSO), MeHg group (0.5 μmol·L−1 MeHg), MT group (1 mmol·L−1 MT), and MT intervention group (1 mmol·L−1 MT+0.5 μmol·L−1 MeHg). In the MT intervention group, cells were exposed to 0.5 μmol·L−1 MeHg for 48 h after 24 h of 1 mmol·L−1 MT pretreatment. (4) SA-β-gal staining was conducted to observe cell senescence; Western blotting for the expression levels of senescence-associated protein p16, autophagy-associated protein p62, LC3Ⅱ, and lysosomal-associated proteins LAMP1, LAMP2, and TFEB; Lyso-Tracker Red for the quantity of lysosomes; LysoSensor Green DND-189 for lysosomal pH changes; electron microscope for the morphological changes of lysosomes. Results The results of CCK-8 indicated that the viability rate of cells decreased with the increase of MeHg exposure concentration. Compared with the control group, the SA-β-gal positive cell ratio in the 0.5 μmol·L−1 MeHg group increased by 48% (P<0.01), p16, p62, as well as LC3Ⅱ protein expressions were significantly increased (P<0.05), LAMP1 and LAMP2 protein levels, as well as the fluorescence intensities of lysosomal red and green fluorescent probes decreased with the increase of MeHg concentration (P<0.05), and the volume of lysosomes increased under the electron microscope. Compared with the MeHg group, the expression of p16 protein was decreased in the 1 mmol·L−1 MT + 0.5 μmol·L−1 MeHg group and the SA-β-gal positive cell ratio was significantly decreased by 19% (P<0.05), the protein levels of p62 and LC3Ⅱ were significantly decreased, the LAMP1 and LAMP2 protein levels and the fluorescence intensities of lysosomal red and green fluorescent probes were increased respectively, the nuclear entry of TFEB was significantly increased, and the differences were statistically significant (P<0.05). Conclusion MeHg may cause cellular senescence by reducing the number of lysosomes and impairing lysosomal activity in SH-SY5Y cells, and MT may ameliorate MeHg-induced lysosomal abnormalities in SH-SY5Y cells, thereby intervening cell senescence.

3.
Journal of China Pharmaceutical University ; (6): 34-48, 2023.
Article in Chinese | WPRIM | ID: wpr-965248

ABSTRACT

@#By regulating gene expression, nucleic acid drugs functioning in the cytoplasm or nucleus are of great significance in the treatment of acquired or inherited diseases and vaccine development.A variety of nucleic acid delivery vectors currently developed are suffering from low transfection efficiency due to endosome/lysosome entrapment.This paper introduces and summarizes the nucleic acid delivery strategies that bypass the endosomal/lysosomal pathway, including membrane translocation, membrane fusion, receptor/transporter-mediated non-endocytic uptake and caveolae-mediated endocytosis, and discusses the problems and challenges facing such strategies, aiming to facilitate the development of intracellular delivery of nucleic acid drugs bypassing lysosomal pathway.

4.
Journal of Zhejiang University. Science. B ; (12): 485-495, 2023.
Article in English | WPRIM | ID: wpr-982389

ABSTRACT

Tacrolimus (TAC), also called FK506, is one of the classical immunosuppressants to prevent allograft rejection after liver transplantation. However, it has been proved to be associated with post-transplant hyperlipemia. The mechanism behind this is unknown, and it is urgent to explore preventive strategies for hyperlipemia after transplantation. Therefore, we established a hyperlipemia mouse model to investigate the mechanism, by injecting TAC intraperitoneally for eight weeks. After TAC treatment, the mice developed hyperlipemia (manifested as elevated triglyceride (TG) and low-density lipoprotein cholesterol (LDL-c), as well as decreased high-density lipoprotein cholesterol (HDL-c)). Accumulation of lipid droplets was observed in the liver. In addition to lipid accumulation, TAC induced inhibition of the autophagy-lysosome pathway (microtubule-associated protein 1 light chain 3β (LC3B) II/I and LC3B II/actin ratios, transcription factor EB (TFEB), protein 62 (P62), and lysosomal-associated membrane protein 1 (LAMP1)) and downregulation of fibroblast growth factor 21 (FGF21) in vivo. Overexpression of FGF21 may reverse TAC-induced TG accumulation. In this mouse model, the recombinant FGF21 protein ameliorated hepatic lipid accumulation and hyperlipemia through repair of the autophagy-lysosome pathway. We conclude that TAC downregulates FGF21 and thus exacerbates lipid accumulation by impairing the autophagy-lysosome pathway. Recombinant FGF21 protein treatment could therefore reverse TAC-caused lipid accumulation and hypertriglyceridemia by enhancing autophagy.


Subject(s)
Animals , Mice , Tacrolimus , Liver , Cholesterol, LDL , Autophagy , Disease Models, Animal
5.
China Journal of Chinese Materia Medica ; (24): 3472-3484, 2023.
Article in Chinese | WPRIM | ID: wpr-981482

ABSTRACT

Ginsenoside Rg_3, an active component of traditional Chinese medicine(TCM), was used as the substitute for cholesterol as the membrane material to prepare the ginsenoside Rg_3-based liposomes loaded with dihydroartemisinin and paclitaxel. The effect of the prepared drug-loading liposomes on triple-negative breast cancer in vitro was evaluated. Liposomes were prepared with the thin film hydration method, and the preparation process was optimized by single factor experiments. The physicochemical properties(e.g., particle size, Zeta potential, and stability) of the liposomes were characterized. The release behaviors of drugs in different media(pH 5.0 and pH 7.4) were evaluated. The antitumor activities of the liposomes were determined by CCK-8 on MDA-MB-231 and 4T1 cells. The cell scratch test was carried out to evaluate the effect of the liposomes on the migration of MDA-MB-231 and 4T1 cells. Further, the targeting ability of liposomes and the mechanism of lysosome escape were investigated. Finally, H9c2 cells were used to evaluate the potential cardiotoxicity of the preparation. The liposomes prepared were spheroid, with uniform particle size distribution, the ave-rage particle size of(107.81±0.01) nm, and the Zeta potential of(2.78±0.66) mV. The encapsulation efficiency of dihydroartemisinin and paclitaxel was 57.76%±1.38% and 99.66%±0.07%, respectively, and the total drug loading was 4.46%±0.71%. The accumulated release of dihydroartemisinin and paclitaxel from the liposomes at pH 5.0 was better than that at pH 7.4, and the liposomes could be stored at low temperature for seven days with good stability. Twenty-four hours after administration, the inhibition rates of the ginsenoside Rg_3-based liposomes loaded with dihydroartemisinin(70 μmol·L~(-1)) and paclitaxel on MDA-MB-231 and 4T1 cells were higher than those of the positive control(adriamycin) and free drugs(P<0.01). Compared with free drugs, liposomes inhibited the migration of MDA-MB-231 and 4T1 cells(P<0.05). Liposomes demonstrated active targeting and lysosome escape. In particular, liposomes showed lower toxicity to H9c2 cells than free drugs(P<0.05), which indicated that the preparation had the potential to reduce cardiotoxicity. The findings prove that ginsenoside Rg_3 characterized by the combination of drug and excipient is an ideal substitute for lipids in liposomes and promoted the development of innovative TCM drugs for treating cancer.


Subject(s)
Humans , Paclitaxel/pharmacology , Liposomes/chemistry , Ginsenosides/therapeutic use , Triple Negative Breast Neoplasms/drug therapy , Cardiotoxicity/drug therapy , Cell Line, Tumor
6.
Journal of Environmental and Occupational Medicine ; (12): 1134-1139, 2022.
Article in Chinese | WPRIM | ID: wpr-960536

ABSTRACT

Background Liver damage presented in endemic arsenic poisoning is usually serious. Studies have shown that oxidative stress, proteasome beta 5 subunit (PSMB5), regulatory transcription factor EB (TFEB), and lysosomes are associated with liver injury, but their specific links to arsenic-induced liver injury remain unclear. Objective Using a sodium arsenite (NaAsO2)-induced rat liver injury model established earlier by the research group, the expressions of PSMB5, TFEB, and lysosomal associated membrane protein 1 (LAMP1) in liver tissues were detected. Methods Twenty-four SPF Wistar rats were randomly divided into control group, and low, medium, and high dose groups, with 6 rats in each group, half male and half female. The exposure concentrations were 0, 25, 50, and 100 mg·L−1 NaAsO2 solutions for 24 weeks. At the end of the experiment, liver was dissected after rats were anesthetized. The levels of alkaline phosphatase (ALP), alanine aminotransferase (ALT), total bile acid (TBA), and catalase (CAT) in liver tissues were detected by chemical colorimetry, and the levels of lipid peroxide (LPO), 4-hydroxynonenal (4-HNE), LAMP1, and cathepsin D (CTSD) in liver tissues were detected by enzyme-linked immunosorbent assay (ELISA); the transcriptional expression levels of PSMB5 and TFEB in liver tissues were detected by real-time fluorescence quantitative PCR (RT-qPCR), and the protein expressions of PSMB5, TFEB, and phosphorylated TFEB (p-TFEB) in liver tissues were detected by immunohistochemistry. Results The results of chemical colorimetry and ELISA showed that compared with the control group, the liver homogenate levels of ALP, TBA, and LAMP1 of each arsenic-exposed group, the ALT and LPO in the medium and high concentration groups, the 4-HNE and CTSD in the high concentration group were increased, while the CAT activity of each arsenic-exposed group was decreased (P<0.05). The results of real-time fluorescence quantitative PCR showed that the transcription levels of PSMB5 and TFEB in the liver tissues of each arsenic-exposed group were decreased compared with those of the control group (P<0.05). The results of immunohistochemistry showed that compared with the control group, the expression of PSMB5 of each arsenic-exposed group were decreased, the expression of TFEB in the medium and high concentration groups was decreased, while the expression of p-TFEB of each arsenic-exposed group was increased (P<0.05). The expression of TFEB protein gradually decreased in the nucleus, while the expression of p-TFEB protein gradually increased in the cytoplasm, but no expression of p-TFEB was found in the nucleus. The results of Pearson correlation analysis showed that PSMB5 in liver tissues was positively correlated with CAT (r=0.818, P<0.05), and negatively correlated with 4-HNE and p-TFEB (r=−0.582, r=−0.899; P<0.05); TFEB was negatively correlated with CTSD and LAMP1 (r=−0.457, r=−0.564; P<0.05); CTSD was positively correlated with ALT and ALP (r=0.529, r=0.485; P<0.05). Conclusion Long-term exposure to NaAsO2 can induce oxidative stress, inhibit the expression of PSMB5 and TFEB, promote the accumulation of p-TFEB in the cytoplasm, decrease the nuclear entry of active TFEB, damage the lysosome, and cause liver damage.

7.
Acta Pharmaceutica Sinica ; (12): 313-320, 2022.
Article in Chinese | WPRIM | ID: wpr-922930

ABSTRACT

In recent years, the targeted protein degradation technology has developed quickly, with proteolysis-targeting chimera (PROTAC) as the best-known strategy through exploring the ubiquitin-proteasome system. A number of new targeted protein degradation strategies have been emerging to expand the scope of protein degradation technology, including lysosome-targeting chimeras (LYTACs), autophagy-targeting chimeras (AUTACs), autophagosome-tethering compounds (ATTECs) and chimeras based on chaperone-mediated autophagy (CMA). The emerging methodologies have explored another important protein degradation system in eukaryotes-lysosomal systems, such as the endosome-lysosome pathway and the autophagy-lysosome pathway. This review summaries the mechanisms and features of different strategies for targeted protein degradation, with a special emphasis on the new targeted protein degradation technologies, such as their current status, advantages and limitations.

8.
Acta Pharmaceutica Sinica B ; (6): 2869-2886, 2022.
Article in English | WPRIM | ID: wpr-939926

ABSTRACT

Nonalcoholic fatty liver disease (NAFLD) is characterized by hepatic steatosis and insulin resistance and there are currently no approved drugs for its treatment. Hyperactivation of mTOR complex 1 (mTORC1) and subsequent impairment of the transcription factor EB (TFEB)-mediated autophagy-lysosomal pathway (ALP) are implicated in the development of NAFLD. Accordingly, agents that augment hepatic TFEB transcriptional activity may have therapeutic potential against NAFLD. The objective of this study was to investigate the effects of nuciferine, a major active component from lotus leaf, on NAFLD and its underlying mechanism of action. Here we show that nuciferine activated ALP and alleviated steatosis, insulin resistance in the livers of NAFLD mice and palmitic acid-challenged hepatocytes in a TFEB-dependent manner. Mechanistic investigation revealed that nuciferine interacts with the Ragulator subunit hepatitis B X-interacting protein and impairs the interaction of the Ragulator complex with Rag GTPases, thereby suppressing lysosomal localization and activity of mTORC1, which activates TFEB-mediated ALP and further ameliorates hepatic steatosis and insulin resistance. Our present results indicate that nuciferine may be a potential agent for treating NAFLD and that regulation of the mTORC1-TFEB-ALP axis could represent a novel pharmacological strategy to combat NAFLD.

9.
China Journal of Orthopaedics and Traumatology ; (12): 374-378, 2022.
Article in Chinese | WPRIM | ID: wpr-928327

ABSTRACT

As an important exercise and energy metabolism organ of the human body, the normal maintenance of skeletal muscle mass is essential for the body to perform normal physiological functions. The autophagy-lysosome (AL) pathway is a physiological or pathological mechanism that is ubiquitous in normal and diseased cells. It plays a key role in the maintaining of protein balance, removing damaged organelles, and the stability of internal environment. The smooth progress of the autophagy process needs to go through multiple steps, which are completed under the coordinated action of multiple factors. Autophagy maintains the muscle homeostasis of a healthy body by removing cell components such as damaged myofibrils and isolated cytoplasmic proteins. Autophagy could also provide the initial energy required for cell proliferation, promote muscle regeneration and remodeling after injury. At the same time, autophagy disorder is also an important cause of age-related skeletal muscle atrophy. Autophagy could affect the response of skeletal muscle to exercise, and increasing the level of basic autophagy is beneficial to improve the adaptive response of skeletal muscle to exercise. This article summarizes the role and pathways of autophagy in the maintenance of skeletal muscle quality, in order to provide effective rehabilitation strategies for clinical prevention and treatment of muscle atrophy.


Subject(s)
Humans , Autophagy/physiology , Exercise/physiology , Muscle, Skeletal/pathology , Muscular Atrophy/pathology , Signal Transduction
10.
Journal of Environmental and Occupational Medicine ; (12): 1376-1382, 2021.
Article in Chinese | WPRIM | ID: wpr-960747

ABSTRACT

Background A prominent feature of endemic arsenic poisoning is severe liver damage. Studies have found that liver injury is closely related to oxidative stress, lysosomes, and autophagy. Objective Through establishing a liver injury model of rats by sodium arsenite (NaAsO2)administration in drinking water, this experiment is designed to explore the roles of oxidative stress, lysosomes, and AMP activated protein kinase (AMPK)/Unc-51 like kinase 1 (ULK1) pathway in this model. Methods Twenty-four Wistar rats were randomly divided into four groups with six rats in each group (half male and half female), including control group and 25, 50, 100 mg·L−1 NaAsO2 groups. A rat liver injury model was established by drinking water containing NaAsO2 freely for 24 weeks. Then liver of rats was dissected after sacrificed, and the levels of alanine aminotransferase (ALT), alkaline phosphatase (ALP), and total bile acid (TBA), catalase (CAT), lipid peroxidation (LPO), and total antioxidant capacity (T-AOC) in liver tissues were detected by assay kits. The levels of lysosomal-associated membrane protein 2 (LAMP2), cathepsin B (CTSB), and acid phosphatase (ACP2) were determined by enzyme linked immunosorbent assay. The mRNA transcriptional expressions of AMPK, ULK1, microtubule-associated protein light chain 3 (LC3), and sequestosome 1 (p62) were detected by real-time fluorescence quantitative PCR (RT-qPCR). The protein expressions of p-AMPK, p-ULK1, LC3, and p62 were detected by immunohistochemistry. Results Following the NaAsO2 administration, significant differences were found in the levels of ALT, ALP, and TBA among the designed groups (F=12.09, 72.11, and 23.58, P<0.05). Compared with the control group, the levels of ALT in the 50mg·L−1 and 100 mg·L−1 NaAsO2 groups were increased (P<0.05); the levels of ALP and TBA in the 25, 50, and 100 mg·L−1 NaAsO2 groups were increased (P<0.05); the level of LPO in the 100 mg·L−1 group was increased (P<0.05); the levels of CAT and T-AOC in the 25, 50, and 100 mg·L−1 NaAsO2 groups were decreased (P<0.05). According to the results of enzyme linked immunosorbent assay, the levels of ACP2 in the 25, 50, and 100 mg·L−1 NaAsO2 groups, the level of CTSB in the 100 mg·L−1 NaAsO2 group, and the levels of LAMP2 in the 50 and 100 mg·L−1 NaAsO2 groups were decreased compared with the control group (P<0.05). Based on the results of RT-qPCR and immunohistochemistry, the mRNA transcriptional and protein expressions of AMPK, ULK1, and LC3 in some arsenic groups were elevated to varying degrees compared with the control group, and the increment in the 100 mg·L−1 NaAsO2 group was significant for all the indicators (P<0.05); the mRNA transcriptional expressions of p62 in the three arsenic groups and the protein expressions of p62 in the 50 and 100mg·L−1 NaAsO2 groups also increased compared with the control group (P<0.05). Besides, the results of Pearson correlation analysis showed that there was a positive correlation of T-AOC with LAMP2, CTSB, and ACP2 (r=0.651, 0.673, 0.626; P<0.05), a negative correlation of LPO with CTSB and ACP2 (r=−0468, −0.482; P<0.05), a negative correlation of p62 with LAMP2, CTSB, and ACP2 (r=−0.57, −0.626, −0.591; P<0.05), and a positive correlation of p62 with ALT, ALP, and TBA (r=0.709, 0.897, and 0.857, P<0.05). Conclusion Long-term arsenic exposure may induce oxidative stress, damage lysosomes, and activate the AMPK/ULK1 pathway, which can lead to the blockage of autophagy process, and eventually result in liver damage.

11.
Journal of Jilin University(Medicine Edition) ; (6): 470-475, 2020.
Article in Chinese | WPRIM | ID: wpr-841543

ABSTRACT

Objective: To investigate the changes of expressions of tubulin and endosome-lysosome in the neurons in hippocampus tissue of the mice after status epilepticus (SE), and to elucidate the change rule of microtubule and endosome-lysosome system in the process of delayed neuronal death. Methods: A total of 40 male ICR mice were divided into control group ( n= 7, given normal saline) and experiment group (w=33» give pilocarpine); the mice in experiment group met the SE standand were divided intoSE 1 d» SE 2 d, SE 3 d and SE 7 d groups according to the time after SE ( n=5). Nissl and Fluoro-Jade B (F-JB) staining methods were used to detect the damage of neurons in hippocampus tissue of the mice in various groups. The expression intensities of (3-tubulin? endosom protein Rab5 and lysosome constitutive protein LAMP1 and the percentages of (3-tubulin∗ Rab5 and LAMP1 positive areas in neurons in hippocampus tissue of the mice in various groups were detected by immunofluorescence method. The relationships between the expression of

12.
Journal of Southern Medical University ; (12): 1280-1287, 2020.
Article in Chinese | WPRIM | ID: wpr-827489

ABSTRACT

OBJECTIVE@#To screen potential traditional Chinese medicine and their active monomer ingredients for treatment of diabetic nephropathy (DN) through the mechanism of caspase-1-mediated pyroptosis.@*METHODS@#Using the Chinese Medicine System Pharmacology Analysis Platform (TCMSP), we screened traditional Chinese drugs and their active monomer components targeting caspase-1, and searched for the potential gene targets of the monomer components using GeneCards database. Cytoscape was used to construct the monomer compound-gene target network. Gene ontology (GO) functional enrichment analysis and Kyoto Gene and Gene Encyclopedia (KEGG) pathway enrichment analysis were used to predict the molecular mechanism of the screened traditional Chinese medicine and monomers. In SD rat models of diabetic mellitus (DM), we tested the therapeutic effect of ginsenoside Rh2 (daily dose of 20 mg/kg for 12 weeks) by examining renal pathology with HE staining and detecting the expressions of pyroptosis marker proteins caspase-1, GSDMD, IL-1β and IL-18 in the renal tissues using Western blotting, the serum levels of IL-1β and IL-18 and activities of cathepsin B and cathepsin L.@*RESULTS@#Ginsenoside Rh2 could effectively dock with caspase-1 molecule. Fourteen targets were identified in ginsenoside Rh2 target network. GO function enrichment analysis revealed 27 GO terms associated with molecular function (4 terms), cell component (10 terms) and biological process (13 terms). KEGG pathyway enrichment analysis identified 4 signaling pathways involving lysosomes, glycosaminoglycan degradation, galactose metabolism, and sphingolipid metabolism pathways. In the animal experiment, treatment with ginsenoside Rh2 significantly alleviated renal pathologies and down-regulated the expressions of pyroptosis marker proteins (cleaved caspase-1, GSDMD-N, IL-1β and IL-18) ( < 0.05 or 0.01), lowered serum levels of IL-1β and IL-18 ( < 0.01), and enhanced the activities of cathepsin B and cathepsin L in the serum of the diabetic rats.@*CONCLUSIONS@#Ginsenoside Rh2 may inhibit caspase-1-mediated pyroptosis through the lysosome pathway to improve kidney damages in rat models of DN.

13.
Article | IMSEAR | ID: sea-200698

ABSTRACT

Discussions about what is life continue to struggle; there are pros and cons for whether a virus is alive. However, an opposite thing –cell death –appears to be tantamount important and equally not-easygoing to define. Nevertheless, our current knowledgeabout eukaryotic cell death has made a long way and resulted in a fruitful outcome: starting from three types of cell death (type I, II and III which are mainly applicable to eukaryotic cells of organisms from the biological kingdom animalia) in 1970s, Nomenclature Committee on Cell Death has named already twelve cell death forms in 2018, including the above mentioned apoptosis, autophagy and necrosis among them. How the scientific attitude towards cellular demise evolved and various aspects of different cell death modes are reviewed in this article.

14.
Int. j. morphol ; 37(2): 522-532, June 2019. graf
Article in English | LILACS | ID: biblio-1002254

ABSTRACT

Amelogenin is one of the enamel matrices secreted by ameloblasts. A mutation of the amelogenin gene can cause hereditary dental enamel defects known as amelogenesis imperfecta (AI). Since lysosome-associated membrane protein-1 (LAMP-1), -3 (LAMP-3), and 78kDa glucose-related protein (Grp78) were identified as binding proteins of amelogenin, several studies have suggested the involvement of these binding proteins with the cell kinetics of ameloblasts in normal or abnormal conditions. The purpose of this study is to investigate the distribution of these amelogenin binding proteins in the ameloblast cell differentiation of mice with a point mutation of the amelogenin gene (Amelx*). The incisors of Amelx* mice had a white opaque color and the tooth surface was observed to be rough under a scanning electron microscope. Among the sequential ameloblast cell differentiation in the Amelx* mice, the shape of ameloblasts at the transition stage was irregular in comparison to those in wild-type (WT) mice. Immunostaining of Grp78 revealed that the whole cytoplasm of the transition stage ameloblasts was immunopositive for Grp78 antibody, while only the distal part of cell was positive in the WT mice. Furthermore, in the Amelx* mice, the cytoplasm of the transition stage ameloblasts was immunopositive for LAMP-1 and LAMP-3. These results suggest that Amelx* may cause the abnormal distribution of amelogenin binding proteins in the cytoplasm of ameloblasts.


La amelogenina es una de las matrices de esmalte secretadas por los ameloblastos. Una mutación del gen de amelogenina puede causar defectos hereditarios del esmalte dental conocidos como amelogénesis imperfecta (AI). Dado que la proteína de membrana asociada a lisosoma-1 (LAMP-1), -3 (LAMP-3) y la proteína relacionada con la glucosa de 78 kDa (Grp78) se identificaron como proteína de unión a amelogenina, varios estudios han sugerido la participación de estas proteínas con la cinética celular de los ameloblastos en condiciones normales o anormales. El objetivo del estudio fue investigar la distribución de LAMP-1, LAM-3 y Grp78 durante la diferenciación celular de ameloblastos de ratones con una mutación puntual del gen de amelogenina (Amelx*). Los incisivos de los ratones Amelx* presentaron un color blanco opaco y se observó en microscopio electrónico de barrido que la superficie del diente era áspera. La diferenciación celular secuencial y la forma de los ameloblastos en la etapa de transición en los ratones Amelx* fue irregular en comparación con los ratones silvestres (RS). La inmunotinción de Grp78 reveló que todo el citoplasma de los ameloblastos en etapa de transición fue inmunopositivo para el anticuerpo Grp78, mientras que solo la parte distal de la célula fue positiva en los ratones RS. Además, en ratones Amelx*, el citoplasma de los ameloblastos en etapa de transición fue inmunopositivo para LAMP-1 y LAMP-3. Estos resultados sugieren que Amelx* puede causar distribución anormal de proteínas de unión a amelogenina en el citoplasma de los ameloblastos.


Subject(s)
Animals , Mice , Lysosome-Associated Membrane Glycoproteins/metabolism , Amelogenin/metabolism , Amelogenesis Imperfecta , Heat-Shock Proteins/metabolism , Microscopy, Electron, Scanning , Fluorescent Antibody Technique , Dental Enamel/pathology , Lysosomal-Associated Membrane Protein 1/metabolism , Amelogenin/genetics , Lysosomal-Associated Membrane Protein 3/metabolism , Incisor/pathology
15.
Journal of Zhejiang University. Science. B ; (12): 699-712, 2019.
Article in English | WPRIM | ID: wpr-847015

ABSTRACT

The mechanistic target of rapamycin complex 1 (mTORC1) controls cell growth and metabolism in response to various environmental inputs, especially amino acids. In fact, the activity of mTORC1 is highly sensitive to changes in amino acid levels. Over past decades, a variety of proteins have been identified as participating in the mTORC1 pathway regulated by amino acids. Classically, the Rag guanosine triphosphatases (GTPases), which reside on the lysosome, transmit amino acid availability to the mTORC1 pathway and recruit mTORC1 to the lysosome upon amino acid sufficiency. Recently, several sensors of leucine, arginine, and S-adenosylmethionine for the amino acid-stimulated mTORC1 pathway have been coming to light. Characterization of these sensors is requisite for understanding how cells adjust amino acid sensing pathways to their different needs. In this review, we summarize recent advances in amino acid sensing mechanisms that regulate mTORC1 activity and highlight these identified sensors that accurately transmit specific amino acid signals to the mTORC1 pathway.

16.
Chinese Pharmaceutical Journal ; (24): 2071-2075, 2019.
Article in Chinese | WPRIM | ID: wpr-857827

ABSTRACT

OBJECTIVE: To explore the effects of human A30P mutant α-synuclein (α-syn) on autophagy lysosome pathway and ubiquitin proteasome system. METHODS: Constructing stable cell lines expressing human A30P mutant α-syn in PC12 cells, and detecting the levels of autophagy related proteins LC3-II and p62 as well as ubiquitinated proteins. Furthermore, the influence of A30P mutant α-syn on cell viability upon normal and stress conditions was conducted by MTT assay. RESULTS: Expressing A30P mutant α-syn could significantly reduce autophagy related protein LC3-II level and increase level of autophagy substrate p62, as well as promote aggregation of ubiquitinated proteins. Otherwise, expressing A30P mutant α-syn did not reduce cell viability under normal conditions. However, cell viability was significantly reduced under treatment with neurotoxin rotenone or serum free condition in A30P mutant α-syn groups compared with empty vector group. CONCLUSION: Over expression of human A30P mutant α-syn could impair the protein degradation system and increase the sensitivity of cells to toxic insults.

17.
The Korean Journal of Parasitology ; : 409-418, 2018.
Article in English | WPRIM | ID: wpr-742283

ABSTRACT

Acanthamoeba spp. are free-living protozoa that are opportunistic pathogens for humans. Cysteine proteases of Acanthamoeba have been partially characterized, but their biochemical and functional properties are not clearly understood yet. In this study, we isolated a gene encoding cysteine protease of A. castellanii (AcCP) and its biochemical and functional properties were analyzed. Sequence analysis of AcCP suggests that this enzyme is a typical cathepsin L family cysteine protease, which shares similar structural characteristics with other cathepsin L-like enzymes. The recombinant AcCP showed enzymatic activity in acidic conditions with an optimum at pH 4.0. The recombinant enzyme effectively hydrolyzed human proteins including hemoglobin, albumin, immunoglobuins A and G, and fibronectin at acidic pH. AcCP mainly localized in lysosomal compartment and its expression was observed in both trophozoites and cysts. AcCP was also identified in cultured medium of A. castellanii. Considering to lysosomal localization, secretion or release by trophozoites and continuous expression in trophozoites and cysts, the enzyme could be a multifunctional enzyme that plays important biological functions for nutrition, development and pathogenicity of A. castellanii. These results also imply that AcCP can be a promising target for development of chemotherapeutic drug for Acanthamoeba infections.


Subject(s)
Humans , Acanthamoeba castellanii , Acanthamoeba , Cathepsin L , Cathepsins , Cysteine Proteases , Cysteine , Fibronectins , Genes, vif , Hydrogen-Ion Concentration , Lysosomes , Sequence Analysis , Trophozoites , Virulence
18.
Environmental Health and Toxicology ; : 2018009-2018.
Article in English | WPRIM | ID: wpr-786746

ABSTRACT

A method of rapidly decaying livestock carcasses is sought through Corine glutamicum, and furthermore, lysosomes are used to remove toxic microorganisms from livestock carcasses. The landfill was constructed on a laboratory scale. Optimized growth conditions of C. glutamicum that could quickly decay livestock carcasses were determined. Lysosomes were extracted from egg whites and used to treat contaminated soil to confirm their antimicrobial activities. Condition of C. glutamicum was activated, regardless both anaerobic and aerobic conditions, soil exists and, to be close to the optimum conditions as possible temperatures, moisture content was about 1/10 of the culture. Lysosomes were found to be effective in clearing soil contamination. C. glutamicum can accelerate the decay of livestock carcasses. A combination of C. glutamicum and lysomes could be used to treat soil contamination caused by decomposition of livestock.


Subject(s)
Burial , Corynebacterium glutamicum , Corynebacterium , Egg White , Livestock , Lysosomes , Methods , Soil , Waste Disposal Facilities
19.
Environmental Health and Toxicology ; : e2018009-2018.
Article in English | WPRIM | ID: wpr-714901

ABSTRACT

A method of rapidly decaying livestock carcasses is sought through Corine glutamicum, and furthermore, lysosomes are used to remove toxic microorganisms from livestock carcasses. The landfill was constructed on a laboratory scale. Optimized growth conditions of C. glutamicum that could quickly decay livestock carcasses were determined. Lysosomes were extracted from egg whites and used to treat contaminated soil to confirm their antimicrobial activities. Condition of C. glutamicum was activated, regardless both anaerobic and aerobic conditions, soil exists and, to be close to the optimum conditions as possible temperatures, moisture content was about 1/10 of the culture. Lysosomes were found to be effective in clearing soil contamination. C. glutamicum can accelerate the decay of livestock carcasses. A combination of C. glutamicum and lysomes could be used to treat soil contamination caused by decomposition of livestock.


Subject(s)
Burial , Corynebacterium glutamicum , Corynebacterium , Egg White , Livestock , Lysosomes , Methods , Soil , Waste Disposal Facilities
20.
China Journal of Chinese Materia Medica ; (24): 3171-3175, 2018.
Article in Chinese | WPRIM | ID: wpr-690400

ABSTRACT

The aim of this paper is to investigate the effect of patchouli alcohol in enhancing Helicobater pylori's action in eradicating macrophages and its mechanism. H. pylori was co-cultured with macrophages at a ratio of MOI=100 in different concentrations of patchouli alcohol. The effect of patchouli alcohol in eradicating macrophages was detected by agar dilution method. The effect of patchouli alcohol on NO and myeloperoxidase (MPO) levels in macrophages were measured by H. pylori by biochemical methods. Patchouli alcohol effect on H. pylori-induced pro-inflammatory gene expression and protein secretion in macrophages were detected by RT-qPCR and ELISA method. The eradication of H. pylori has significantly enhanced, and the destabilization of lysosomes has been reversed. Meanwhile, patchouli alcohol has an effect in inhibiting pro-inflammation and oxidation. The mechanism of patchouli alcohol in eradicating H. pylori and resisting oxidative stress may be associated to the blocking of bacteria escape lysosome combination procedures.

SELECTION OF CITATIONS
SEARCH DETAIL